Mitochondrial Cardiomyopathies
نویسندگان
چکیده
Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.
منابع مشابه
Cardiological manifestations of mitochondrial respiratory chain disorders
Mitochondrial Respiratory Chain Disorders (MRCD) are a heterogeneous group of disorders that share the involvement of the cellular bioenergetic machinery due to molecular defects affecting the mitochondrial oxidative phosphorylation system (OXPHOS). Clinically, they usually involve multiple tissues although they tend to mainly affect nervous system and skeletal muscle. Cardiological manifestati...
متن کاملInduction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies.
OBJECTIVES The purpose of this study was to clarify the molecular mechanisms linking human mitochondrial deoxyribonucleic acid (mtDNA) dysfunction to cardiac remodeling. BACKGROUND Defects of the mitochondrial genome cause a heterogeneous group of clinical disorders, including mitochondrial cardiomyopathies (MIC). The molecular events linking mtDNA defects to cardiac remodeling are unknown. E...
متن کاملMitochondrial tRNA valine as a recurrent target for mutations involved in mitochondrial cardiomyopathies.
The aim of this study was to identify the genetic defect in two patients having cardiac dysfunction accompanied by neurological symptoms, and in one case MRI evidence of cortical and cerebellar atrophy with hyperintensities in the basal ganglia. Muscle biopsies from each patient revealed single and combined mitochondrial respiratory chain deficiency. The complete mtDNA sequencing of both patien...
متن کاملMitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy.
Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an un...
متن کاملCardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation.
Doxorubicin is an effective anticancer drug with known cardiotoxic side effects. It has been hypothesized that doxorubicin-dependent cardiotoxicity occurs through ROS production and possibly cellular iron accumulation. Here, we found that cardiotoxicity develops through the preferential accumulation of iron inside the mitochondria following doxorubicin treatment. In isolated cardiomyocytes, dox...
متن کامل